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We prove that there are arbitrarily many quantum logics, none of which is 
"similar" to a part of another and each of which has the group of all symmetries 
isomorphic to a given abstract group. Moreover, each of them contains a given 
logic with atomic blocks as its sublogic. 

1. I N T R O D U C T I O N  AND THE MAIN T H E O R E M  

Every abstract group can be represented as the group of all automorph- 
isms of an or thomodular  lattice (see Kalmbach,  1984). We present here 
results that generalize and strengthen this. A simplified (state-free) version 
of our Main Theorem can be stated as follows: Given a collection {~iti ~ I} 
of  abstract groups and a partial order _ on the index set I, then there exists 
a collection {Li[ i ~ I} of  or thomodular  lattices such that: 

(a) For each i c / ,  the group of  all automorphisms of Li is isomorphic 
to %. 

(b) For each i, j ~ 1, L~ can be embedded into Lj iff i<_j. Moreover, 
we can require that all the L~ contain a given orthomodular  lattice L with 
atomic blocks. (The choice of  a large set I with the discrete order--i .e. ,  
any two distinct elements of I are incomparable--gives  the "state-free" 
version of the result. 

However, to be closer to the structures investigated in quantum 
mechanics, we consider quantum logics in the sense of  Mackey (1963), i.e. 
o--orthomodular posers with a or-convex full set of  states. 

First, let us recall the terminology and describe our notation. A quantum 
logic is a pair Q = (L, M) ,  where L is a cr-orthomodularposet [i.e., a partial 
order _< on L and a complementat ion ': L-> L are given such that L has 
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the smallest element 0, the largest element 1, 0 ~ 1, and (p ' ) '=  p, p v p ' =  1, 
p ^ p ' = O  for all p e L ,  p<-q iff p'>-q', p<-q implies q = p v ( q A p ' ) ;  
moreover, if Pl, P2 . . . .  is a sequence of pairwise orthogonal elements, i.e., 
pi<<-p~ for i r  then the join V,~__1 p, exists in L] and M is a o'-convexfull 
set of  states on L [i.e., each m ~ M is a map of L into (0, 1) such that 

m(0)=0 ,  m ( p ' ) = l - m ( p ) ,  and m(Vn~__lp,,)= ~ m(p , )  whenever 
n = l  

P~, P2, .- �9 is a sequence of pairwise orthogonal elements; moreover, M is 
closed under the forming of ~r-convex combinations, i.e., for any sequences 
{a,} of real numbers and {m,} of states, 

n = l  n = l  

and M is full in the sense that it determines the order of L, i.e., for every 
p, q ~ L, we have, (Vm c M, m(p) ~ m ( q ) ) ~ p  <- q]. 

A sublogic Q = (L, M )  of a quantum logic (~ = ( L  ~t)  is determined 
by a couple of one-to-one mappings 

A: L~/~,  /_t: M~hT/  

where A is a homomorphism of tr-orthomodular posets (i.e., it preserves O, 
complements, and joins of pairwise orthogonal sequences) and/z  preserves 
~-convex combinations and 

(i) {moXlr~eM}=M 
(ii) /z(m)o,~=m, V m ~ M  

The couple (A, ~)  often will be referred to as the embedding of Q into t~. 
A quantum logic Q = (L, M)  is a retract of a quantum logic t~ = (L, M) 

if t.here exist homomorphisms of ~-orthomodular posets 

c: L-> L, r: f-,~ L 

such that r o c is the identity mapping on L and 

V m c M ,  m o r c ~ l  

V rh ~ IQ, -m o c ~_ M 

Obviously, if we define/z: M ~ / ~  by sett ing/x(m) = m o r, then the couple 
(c,/z) determines an embedding of Q into O as a sublogic. 
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A symmetry of a quantum logic Q :  (L, M) (Pulmannov~i, 1977) is any 
automorphism r: L ~  L for which {mo ~'1 m ~ M} = M. 

We recall that a block in a ~r-orthomodular poset L is every maximal 
Boolean subalgebra of L (Kalmbach, 1983). 

Main Theorem. Let Q = (L, M)  be a quantum logic, L having only 
atomic blocks. Let { ~ I i ~ L} be any family of  groups and let ___ be a partial 
order on the index set L Then there exists a family {Q~li~ I} of  quantum 
logics, Q~ = (L~, M,), such that: 

(a) For each i E I, the group of all symmetries of  Qi is isomorphic to 
the given group ~. 

(b) For each i ~/ ,  the given quantum logic Q is a sublogic of Q~. 
(c) If i<_j, then Q~ is a retract of Qj. 
(d) If  iz~j, then there is no one-to~one homomorphism of Li into Lj, 

so that Q~ is not a sublogic of  Qj. 
Remarks 
1. It is natural to think of some particular cases, e.g. (a) I is a one-point 

set [this gives a quantum logic variant of the result of Kalmbach (1984), 
enriched by the embedding of a given quantum logic]; (b) I is large with 
the discrete order; (c) I is a long chain. 

2. The rest of the paper is devoted to the proof  of the Main Theorem. 
Moreover, we show that the constructed quantum logics Q~ = (Li, M~) inherit 
some nice properties of the given quantum logic Q = (L, M).  For example, 
if L is a lattice, so are Li, i~ I ;  if Q is two-valued (TV) (i.e., every pure 
state m c M maps L into the two-point set {0, 1}), so are Qj. If Q is strongly 
full (SF) [i.e., for every a, b ~ L, 

({m e h4[m(a)  = 1}c {m E M Im(b ) = 1})~a--< b] 

so are Qi, i~ L We mention explicitly the last two properties in the proofs 
of  the lemmas and propositions in the next parts of the paper. 

2. EMBEDDINGS INTO RIGID QUANTUM LOGICS 

A quantum logic is called rigid if it has no non-identical symmetry. In 
this section, we construct an embedding of  a given quantum logic into a 
rigid quantum logic. 

Every orthomodular poset L is covered by blocks (see Kalmbach, 1983). 
Following Kalmbach, let us denote by 2"-block in L any block of L 
isomorphic to a Boolean algebra with n atoms. A 23-block in L is called 
clear if it contains an atom that is dominated by only two non-trivial elements 
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of  L [i.e., if x, y, z are its a toms,  then one of  them,  say y, is domina ted  
(besides y and 1) only by x '  and z']. 

L e m m a  1. Let Q = (L, M )  be a quan tum logic. Then there is a quan tum 
logic (~ = (L, M )  and an embedding  (~, /x)  o f  Q into (~ such tha t /S  contains  
nei ther  a 22-block nor  a clear 23-block. (Moreover ,  if Q is TV or SF, so is 

0.) 
P r o o f  (a) Every 22-block in L, genera ted  by an a tom x, is e m b e d d e d  

into a 24-block, where x becomes  one of  the a toms;  the other  a toms,  say 
a, b, c, are newly added  to L (we obtain a t r -o r thomodula r  poset  L; L is a 
lattice whenever  L is a lattice). We extend each state m e M to three states 
fitl, fit2, fit3, putt ing 

f i t l ( a ) = l - m ( x ) ,  fita(b) = fit,(c) = 0 

r~2(b ) = 1 - m ( x ) ,  fit2(a) = ritz(C) = 0 

fit3(c) = 1 - m ( x ) ,  fit3(a) = fits(b) = 0 

and M is a c r  convex hull o f  the set {if/l, mz, fit31m 6 M}. We put,  e.g., 
~ ( m )  = fit~. (Clearly,  t~ is SF or TV if Q is SF or TV.) 

(b) Every clear 23-block in L with a toms,  say, x, y, z, where  y is 
domina ted  only by x '  and  z', is embedded  into a 2a-block with a toms x, t, u, z 
such that  y =  t v u, the a toms t, u are newly added  to L (we obta in  a 
t r -o r thomodula r  poset /S,  which is a lattice whenever  L is a lattice). Every 
state m e M is extended to two states fit~ and ritz by put t ing 

fitl(t) = fit2(u) = re ( y ) ,  fit l ( u ) = fit 2 ( t ) = 0 

Then M is a ~ -convex  hull o f  the set { f i t~ , f i t2 lmeM}.  We put,  e.g., 
/z(m) = fit1. (Clearly,  t~ is SF or TV if Q is SF or TV.) 

(c) Repeat ing  the procedures  under  (a) and (b), we obtain the quan tum 
logic with the required propert ies .  

R e m a r k .  In the next  proof ,  we use a construct ion me thod  of  forming 
o r thomodu la r  lattices f rom undirected graphs  [for the idea, see Sabidussi  
(1957) and  Ka lmbach  (1983)]. An undirected graph  G = ( V ,  E )  is called 
suitable if it is connected,  it contains no triangles and no squares,  and each 
its vertex has the degree at least 2. By qb(G) we denote  the o r thomodu la r  
lattice ob ta ined  in the fol lowing way: every vertex of  G is represented  by 
an a tom in qb(G); every edge {x, y } c  E is represented  by a clear 23-block 
in qb(G) with a toms x, y, x '  ^ y ' ;  whenever  two edges have a c o m m o n  vertex, 
the cor responding  23-blocks are glued together  by the c o m m o n  a tom (and 
its complement ) .  Since G is suitable, 4)(G) is really an o r thomodu la r  lattice 



Symmetries and Retracts of Quantum Logics 5 

(see Kalmbach,  1983). Since every pairwise orthogonal sequence of elements 
of  qb(G) contains at most two nonzero elements, qb(G) is a tr-orthomodular 
lattice. Every automorphism of  ~ ( G )  sends each clear 23-block on a clear 
23-block again. This implies easily that the group A u t O ( G )  of all 
automorphisms of qb(G) is isomorphic to the group Aut G of all automorph- 
isms of G (Sabidussi 1957; Kalmbach,  1983). 

Proposition 1. Every quantum logic Q = (L, M) ,  L having only atomic 
blocks, can be embedded into a rigid q u a n t u m  logic (~ = (L, M).  

Proof  By Lemma 1, we can suppose that L contains no 22-blocks and 
no clear 23-blocks. Let A be the set of  all atoms of L. Let G =  (V, E)  be a 
suitable graph such that Aut G is the trivial group and there is an indepen- 
dent set N c  V in G (i.e., {x, y}~ E whenever x, y c N )  such that card 
N->ca rd  A [such a graph exists; see, e.g., Pultr and Trnkovfi (1980)]. Let 
f : A ~  N be a one-to-one mapping. We fo rm / 7  as follows: in the disjoint 
union L �9  qb(G) [with 0 in L and 0 in d~(G) identified and analogously for 
1], we set 

a <- f (a ) '  for every a ~ A 

[hence we add a v f ( a )  and a '  ^ f ( a ) '  as new elements]. 
Every automorphism ~': L ~  L sends every clear 23-block in /7 onto a 

clear 23-block again, every element of /2  that belongs only to clear 23-blocks 
on an element with the same property and every element that belongs also 
to a block not being a clear 23-block on an element with the same property. 
This implies that r sends ~ ( G )  into itself and L also into itself. Since 
Aut qb(G)---Aut G is trivial, ~- must be identical on qb(G). Since a ~ A is 
the unique element of  L\{0} with a - - - f ( a ) ' =  z ( f ( a ) ' ) ,  necessarily z(a)  = a. 
Consequently ~- is identical on L, hence on the whole/7. Thus, Aut/Tis trivial. 

Now, we define the states on L: for each m c M and every independent 
set P of G = ( V ,  E),  we define a state me on /~ such that 

rap(1) = m( l )  for all I c  L 

m e ( v )  = 1 for all v ~ P \ f ( A )  

m e ( v )  = 1 - re(a)  whenever v c P, v = f ( a )  for some a 6 A, 

m e ( v )  = 0  for all vE  V \  P 

For the other elements of/7, the value of mp is determined by the fact that 
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mp is a state on /S [since mp(x)+mp(y)<_ 1 whenever {x ,y}~ E, the 
definition of  mp(x v y) by rap(X)+ mp(y) is correct]. The set M is just the 
tr-convex hull of  all mp, where m E M and P ranging over all independent 
sets of vertices of G. The routine verification that M is a full set of  states 
on /S is omitted. I f  A : L ~ /S  is the inclusion and /x  : M ~ M is defined by 
/~(m) = m e ,  then (a, ix) is an embedding of Q = (L, M)  into t) = (L, M).  
And if Q is TV or SF, so is Q. 

Remark. Observe that L\{0, 1} is a connected poset (in the sense that 
for every a, b there is a chain Xo, Yo,- �9 �9 xn, yn such that Xo = a, y, = b and 
xi <-y; for i = 0 , . . . ,  n, Y~-I-  x~ for i = 1 , . . . ,  n). In fact, suitable graphs are 
connected; hence, every x, y ~ ~ (G) \{0 ,  1} can be joined by a chain as above 
and for every element l of  L\{0, 1} we can find an atom a with a-< l, so 
that l can be joined with f ( a ) '  in q~(G). 

Proposition 2. Let cg be an arbitrary group. Let t) = (L-, ~t )  be a rigid 
quantum logic,/5.\{0, 1} a connected poset. Then there is an embedding of 
t~ into a quantum logic Q+ = (L § M § with the group of all symmetries 
isomorphic to ~. Moreover, if Q is TV or SF, so is Q§ 

Proof Let G be a suitable graph with Aut G-~ ~ such that ~ ( G )  is 
not isomorphic to/~ [since there are arbitrarily large suitable graphs G with 
Aut G--- ~3 (see Pultr and Trnkovg, 1980), such a graph exists]. Let L § be 
the disjoint union L~Cb(G)  [with 0 in /2 and 0 in qb(G) identified and 
analogously for 1]. Then Aut L +-~ ~3. In fact, /2\{0, 1} and ~ ( G ) \ { 0 ,  1} are 
nonisomorphic connected posets, so every automorphism ~" ~ Aut L § sends 
/2\{0, 1} into itself and qb(G)\{0, 1} also into itself and, since () is rigid, it 
is identical on /2. The set M § of states is obtained by the extensions of  
elements o f / ~  as in the previous proof. 

3. THE P R O O F  OF T H E  MAIN T H E O R E M  

Let { ~ l i  ~ I} be a family of  groups and _< be a partial order on I and 
we may suppose that for every two elements i, i' ~ I there is their meet i ^ i' 
in ! (it can be easily ensured by enlarging the se t / ,  the corresponding new 
groups ~3~ being defined arbitrarily). 

Let us define a small category k as follows: the set obj k of  all objects 
of  k is precisely the set I ;  the set k(i, i') of all morphisms of k from i in 
i' is 

k( i, i') = {[pi,j, g, 39,,'] IJ ~ I, j <__ i a i', g ~ Gj} 

where Pi3 and 7j, r are symbols making the sets of morphisms disjoint for 
different pairs of  objects. The composition of morphisms in k (which is 
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written for convenience from the left to the right) is defined by 

[p,j ,  g, ~,j.,,] o [p . j , .  g,, 3'/...] 

[Pi j ,  g" g', Tj, i"] i f j  = j  ^ j '  = j ' ;  

[P~,j, g, Tj, r] i f j = j ^ j ' ~ j ' ;  

[p~,j,, g', %/f,,,,] i f j  ~ j  ^ j '  = j '  

[P~jo, 1, ~/jo,r '] i f j o = j ^ j  ', j o ~ j ,  j o ~ j '  

It is easily seen that this composi t ion  is associative, so that we really obtain 
a category. Let us denote  [p~,:, 1, 39d] ( w h e r e  1 is the  un i t  o f  the  g r o u p  ~ )  
by r~,~ and [pjj ,  1, yj,~] by c/,i. Then, for  every i ~ / ,  ri,~ = c;,~ is the identity 
morphism on the object i, denote  it by 1~. It should not  be confusing to 
denote  [p~,~, g, %,~] by g (c~q~) again. Hence,  we see that the category k 
i s - - i n fo rma l ly - -ob ta ined  as follows: for  every object  i c obj k = / ,  we form 
the endormorph i sm monoid  k ( i ,  i) starting from the group cg~ (we may 
suppose that  the groups are disjoint);  if i<_j,  we add two "genera t ing"  
morphisms ci, j ~ k ( i , j )  and r : , ~ k ( j ,  i)  and form a "f ree  envelope with 
respect to the equat ions"  

cidorj ,  i = r i ,  i^~,oc~^i,,i f o r a l l  i , j , i ' ~ I ,  i<__j>_i' (1) 

cid ~ c/,t = ci.t, rtd o r~,i = rt,~ for  all i _<j -< 1 in I (2) 

ci,j o g -~- Ci.j " g o r j ,  i - - -  rj, i for  all i < j  in I and g E ~ .  (3) 

l i = 1 = ci, i = ci, i ~ 1 = 1 o ci, i = 1 o ri, i = ri, i ~ 1 = ri, i (4) 

for  all i c l a n d  1 c ~  

Observe that every rj,~ is a retraction and c~,j the corresponding coretract ion 
(i.e., c i j o  r:,i = li for all i ~ j  in 1) and 

if i ~ j ,  then every morphism in k ( i ,  j )  factors through r~,~^j, 
which is a p roper  retraction (i.e., not an isomorphism) (*) 

Given a cardinal number  a, denote  by 9~ the category of  all suitable 
graphs ( V, E)  with card V_> a and all their  compat ible  mappings as morph-  
isms [i.e., f :  ( V, E)  ~ ( Vl, El)  is a morphism of  Sea iff it is a mapping o f  V 
into V1 such that {x,  y }  ~ E ~ { f ( x ) , f ( y ) }  e E~]. By Pultr and Trnkov~ (1980, 
Chapter  IV), every small category can be fully embedded  in 5~ Denote  
by 'I r : k ~ b~ a full embedding  [i.e., for all objects i, j o f  k, ~ maps bijectively 
k ( i , j )  onto  the set of  all compat ible  maps of  xF(i) into ~ ( j ) ] .  If  i , j ~  I, 
i<_j,  then rj,~ ~ k ( j ,  i) is a retraction in k; hence ~(rj,~) is a retraction in 6e ,  
so it is surjective on vertices as well as on edges. But for  i < j ,  rj, i is not an 
isomorphism and therefore  ~(rj ,  i) is not one-to-one.  Consequent ly ,  by (*), 



8 Kailus and Trnkovfi 

if i ~ j ,  then there is no one-to-one compatible mapping of the graph xP'(i) 
into ~ ( j ) .  Moreover, Aut ~ ( i ) =  ~i fo r  every i~ L 

The completion of the proof  of  the Main Theorem is now at hand. 
Given a quantum logic Q = (L, M),  L having only atomic blocks, construct 
a rigid quantum logic (~ = (L, M)  as in the proof  of  Proposition 1. Let k 
be the small category constructed from { ~ i l i ~ I }  and the partial order _ 
on L Choose a > c a r d / ~  and find a full embedding gr: k_~9o . Then, for 
each i c I, construct the quantum logic Qi = (Li, Mi) with Aut Li --- ~3; as in 
the proof  of  Proposition 2 by means of Q and the suitable graph g?(i). I f  
i<_j, then the graph ~ ( i )  is a retract of  ~ ( . j ) a n d  this implies easily that 
Q, is a retract of  Qj. Of  1 :~j, then there is no one-to-one homomorphism of 
L~ into Lj. In fact, L~ is obtained f r o m / S u  qb(~(i)) and L~ f rom/Td  qb(~(j))  
(see the proof  of  Proposition 2), so any one-to-one homomorphism L~ -~ L~ 
sends the connected poset dp(~(i))\{0, 1} either into L\{0, 1} or into 
�9 (~( j ) ) \{0 ,  1}. The first case is impossible because a > card/~, the second 
case is also impossible because if i ~ j ,  then there is no one-to-one compatible 
mapping of  ~ ( i )  into ~ ( j )  and hence no one-to-one homomorphism of 
dp(xp'(i)) into dP(xtr(j)) [in fact, if h: d p ( ~ ( i ) ) ~ q b ( ~ ( j ) )  is a one-to-one 
homomorphism,  then it sends every chain 0 < x < x v y < 1 of the length 4 
on a chain of  the length 4 in qb(~(j)) ,  say 0 < a < b < 1, so that a = h(x)  
is either a vertex of ~ ( j )  or an atom of the form c' ^ d ' ;  but the last case 
is impossible because there are at most two such chains containing e' ^ d ' ,  
namely O < e ' A d ' < c ' < l  and O < c ' ^ d ' < d ' < l ,  while there are at least 
four such chains containing x, namely 0 <  x < x v y < 1, 0 <  x < y ' <  1, 0 < 
x < x v z < 1, and 0 < x < z' < 1, where {x, y} and {x, z} are distinct edges 
with the vertex x in the suitable graph ap(i); consequently, h sends vertices 
of  ~ ( i )  on vertices of  ~ ( j )  and if {x, y} is an edge of ~ ( i ) ,  then h(x v y ) =  
h(x) v h(y),  so that {h(x), h(y)} is an edge of qs(j)]. 
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