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Symmetries and Retracts of Quantum Logics
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We prove that there are arbitrarily many quantum logics, none of which is
“similar” to a part of another and each of which has the group of all symmetries
isomorphic to a given abstract group. Moreover, each of them contains a given
logic with atomic blocks as its sublogic.

1. INTRODUCTION AND THE MAIN THEOREM

Every abstract group can be represented as the group of ail automorph-
isms of an orthomodular lattice (see Kalmbach, 1984). We present here
resuits that generalize and strengthen this. A simplified (state-free) version
of our Main Theorem can be stated as follows: Given a collection {4, |ie I}
of abstract groups and a partial order < on the index set I, then there exists
a collection {L;|ie I} of orthomodular lattices such that:

(a) For each i< I, the group of all automorphisms of L; is isomorphic
to 4.

(b) For each i, je I, L; can be embedded into L; iff i <j. Moreover,
we can require that all the L; contain a given orthomodular lattice L with
atomic blocks. (The choice of a large set I with the discrete order—i.e.,
any two distinct elements of I are incomparable-—gives the “state-free”
version of the result.

However, to be closer to the structures investigated in quantum
mechanics, we consider quantum logics in the sense of Mackey (1963), i.e.
o-orthomodular posets with a o-convex full set of states.

First, let us recall the terminology and describe our notation. A quantum
logic is a pair Q = (L, M), where L is a o-orthomodular poset [i.e., a partial
order < on L and a complementation ': L- L are given such that L has
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the smallest element 0, the largest element 1, 0# 1, and (p') =p, pvp' =1,
pap'=0 for all pel, p<gq iff p'=q', p=<q implies g=pv(gnrp’);
moreover, if p;, p., ... is a sequence of pairwise orthogonal elements, i.e.,
p: = pj for i # j, then the join \/,_, p, exists in L] and M is a o-convex full
set of states on L [i.e., each me M is a map of L into {0, 1) such that

m(0)=0, m(p)=1-m(p), and m(\/‘i.°=1pn)=§ m(p,) whenever

P1, P2, -- - 18 a sequence of pairwise orthogonal elements; moreover, M is
closed under the forming of o-convex combinations, i.e., for any sequences
{a,} of real numbers and {m,} of states,

0 =]
a, =0, Y oa,=1=> Y ameM
n=1

and M is full in the sense that it determines the order of L, i.e., for every
p, g€ L, we have, (Yme M, m(p)=m(q))=>p=q].

A sublogic Q =(L, M) of a quantum logic Q = (L, M) is determined
by a couple of one-to-one mappings

A L= L pw: M->M

where A is a homomorphism of o-orthomodular posets (i.e., it preserves 0,
complements, and joins of pairwise orthogonal sequences) and p preserves
o-convex combinations and

(i) {mor|meM}=M
(i) w(m)eA=m, VmeM

The couple (A, u) often will be referred to as the embedding of Q into Q.

A gquantum logic Q = (L, M) is a retract of a quantum logic Q = (L, M)
if there exist homomorphisms of o-orthomodular posets

¢: L->I, r L-L
such that r° ¢ is the identity mapping on L and
VmeM, moreM

Ve M, moce M

Obviously, if we define u: M > M by setting u(m) = m e r, then the couple
(¢, ) determines an embedding of Q into Q as a sublogic.
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A symmetry of a quantum logic Q = (L, M) (Pulmannov4, 1977) is any
automorphism 7: L L for which {mer|me M}=M.

We recall that a block in a o-orthomodular poset L is every maximal
Boolean subalgebra of L (Kalmbach, 1983).

Main Theorem. Let Q=(L, M) be a quantum logic, L having only
atomic blocks. Let {%;,|i e L} be any family of groups and let < be a partial
order on the index set I. Then there exists a family {Q;|ie I} of quantum
logics, Q; = (L;, M), such that:

(a) For each ie I, the group of all symmetries of Q; is isomerphic to
the given group %.

(b) For each ie I, the given quantum logic Q is a sublogic of Q;.

(c) If i=j, then Q; is a retract of Q;.

(d) If i, then there is no one-to-one homomorphism of L; into L;,

so that Q; is not a sublogic of Q;.

Remarks

1. Itis natural to think of some particular cases, e.g. (a) I is a one-point
set [this gives a quantum logic variant of the result of Kalmbach (1984),
enriched by the embedding of a given quantum logic]; (b) I is large with
the discrete order; (c) I is a long chain.

2. The rest of the paper is devoted to the proof of the Main Theorem.
Moreover, we show that the constructed quantum logics Q, = {1, M,) inherit
some nice properties of the given quantum logic Q = (L, M). For example,
it Lis a lattice, so are L, ieI; if Q is two-valued (TV) (i.e., every pure
state m € M maps L into the two-point set {0, 1}), so are Q;. If Q is strongly
full (SF) [i.e., for every a,be L,

({meM|m(a)=1}c{meM|m(b)=1})=>a=b]

so are Q;, i€ I. We mention explicitly the last two properties in the proofs
of the lemmas and propositions in the next parts of the paper.

2. EMBEDDINGS INTO RIGID QUANTUM LOGICS

A quantum logic is called rigid if it has no non-identical symmetry. In
this section, we construct an embedding of a given gnantum logic into a
rigid quantum logic.

Every orthomodular poset L is covered by blocks (see Kalmbach, 1983).
Following Kalmbach, let us denote by 2"-block in L any block of L
isomorphic to a Boolean algebra with n atoms. A 2*-block in L is called
clear if it contains an atom that is dominated by only two non-trivial elements
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of L [i.e., if x, y, z are its atoms, then one of them, say y, is dominated
(besides y and 1) only by x" and z'].

Lemma 1. Let Q= (L, M) be a quantum logic. Then there is a quantum
logic @ = (L, M) and an embedding (A, u) of Q into Q such that L contains
neither a 2>-block nor a clear 2>-block. (Moreover, if Q is TV or SF, so is
Q)

Proof. (a) Every 2>-block in L, generated by an atom x, is embedded
into a 2*-block, where x becomes one of the atoms; the other atoms, say
a, b, ¢, are newly added to L (we obtain a o-orthomodular poset L; L is a
lattice whenever L is a lattice). We extend each state m € M to three states
m,, M, mi;, putting

my(a) =1—m(x), my(b) = (c)=0
my(b) =1—m(x), my(a) =my(c)=0
y(c)=1-m(x),  ris(a) = rs(b) =0

and M is a o convex hull of the set {r,, m,, m;|me M}. We put, e.g.,
w(m)=m,. (Clearly, Q is SF or TV if Q is SF or TV.)

(b) Every clear 2°-block in L with atoms, say, x,y,z where y is
dominated only by x’ and z’, is embedded into a 2*-block with atoms x, #, u, z
such that y=1tvu, the atoms ¢, u are newly added to L (we obtain a
o-orthomodular poset L, which is a lattice whenever L is a lattice). Every
state me M is exiended to iwo states m, and m, by puiting

mi()=my(u)=m(y),  m(u)=my(1)=0

Then M is a o-convex hull of the set {rm,, m,jme M}. We put, e.g.,
w(m)=m,. (Clearly, Q is SF or TV if Q is SF or TV.)

(c) Repeating the procedures under (a) and (b}, we obtain the quantum
logic with the required properties.

Remark. In the next proof, we use a construction method of forming
orthomodular lattices from undirected graphs [for the idea, see Sabidussi
(1957) and Kalmbach (1983)]. An undirected graph G=(V, E) is called
suitable if it is connected, it contains no triangles and no squares, and each
its vertex has the degree at least 2. By ®(G) we denote the orthomodular
lattice obtained in the following way: every vertex of G is represented by
an atom in ®(G); every edge {x, y} € E is represented by a clear 2*>-block
in ®(G) with atoms x, y, x' A y'; whenever two edges have a common vertex,
the corresponding 2°-blocks are glued together by the common atom (and
its complement). Since G is suitable, ®(G) is really an orthomodular lattice
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(see Kalmbach, 1983). Since every pairwise orthogonal sequence of elements
of ®(G) contains at most two nonzero elements, ®(G) is a o-orthomodular
lattice. Every automorphism of ®(G) sends each clear 2°-block on a clear
2*>-block again. This implies easily that the group Aut®(G) of all
automorphisms of ®(G) is isomorphic to the group Aut G of all automorph-
isms of G (Sabidussi 1957, Kalmbach, 1983).

Proposition 1. Every quantum logic Q = (L, M), L having only atomic
blocks, can be embedded into a rigid quantum logic Q = (I, M).

Proof. By Lemma 1, we can suppose that L contains no 2>-blocks and
no clear 2°-blocks. Let A be the set of all atoms of L. Let G=(V, E) be a
suitable graph such that Aut G is the trivial group and there is an indepen-
dent set Nc V in G (i.e., {x, y}¢ E whenever x,y€ N) such that card
N =card A [such a graph exists; see, e.g., Pultr and Trnkova (1980)]. Let
f:A- N be a one-to-one mapping. We form L as follows: in the disjoint
union LU ®(G) [with 0 in L and 0 in ®(G) identified and analogously for
1], we set

a=<f(a) for every ac A

[hence we add a v f(a) and a’ A f(a)’ as new elements].

Every automorphism 7: L L sends every clear 2°-block in L onto a
clear 2°-block again, every element of L that belongs only to clear 2°-blocks
on an element with the same property and every element that belongs also
to a block not being a clear 2°-block on an element with the same property.
This implies that 7 sends ®(G) into itself and L also into itself. Since
Aut ®(G) = Aut G is trivial, 7 must be identical on ®(G). Since a€ A is
the unique element of L\{0} with a =< f(a)'=+(f(a)’), necessarily (a) = a.
Consequently 7 is identical on L, hence on the whole L. Thus, Aut Lis trivial.

Now, we define the states on L: for each m ¢ M and every independent
set P of G=(V, E), we define a state mp on L such that

mp(l)=m(l) forallle L

mp(v)=1 for all ve P\f(A)

mp(v)=1-m(a) whenever ve P, v=f(a) for some ac A,
mp(v)=0 for all ve V\ P

For the other elements of L, the value of mp is determined by the fact that
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mp is a state on L [since mp(x)+mp(y)=1 whenever {x, y}cE, the
definition of mp(x v y) by mp(x)+mp(y) is correct]. The set M is just the
o-convex hull of all mp, where me M and P ranging over all independent
sets of vertices of G. The routine verification that M is a full set of states
on L is omitted. If A:L- L is the inclusion and g : M > M is defined by
w(m)=mgy, then (A, n) is an embedding of Q= (L, M) into Q =(L, M).
And if Q is TV or SF, so is Q.

Remark. Observe that L\{0, 1} is a connected poset (in the sense that
for every a, b there is a chain xg, ¥y, - . . , X5, ¥, such that x,=a, y, = b and
xi=yfori=0,...,ny_=x fori= 1 ., n). In fact, suitable graphs are
connected; hence, every x, y € @(G)\{O, 1} can be joined by a chain as above
and for every element [ of L\{0, 1} we can find an atom a with a<1, so
that / can be joined with f(a)' in ®(G).

Proposition 2. Let 4 be an arbitrary group. Let Q = (L, M) be a rigid
quantum logic, I\{0,1} a connected poset. Then there is an embedding of
Q into a quantum logic Q" =(L*, M™) with the group of all symmetries
isomorphic to % Moreover, if Q is TV or SF, so is Q".

Proof. Let G be a suitable graph with Aut G =9 such that ®(G) is
not isomorphic to L [since there are arbitrarily large suitable graphs G with
Aut G =% (see Pultr and Trnkova, 1980), such a graph exists]. Let L be
the disjoint union LU ®(G) [with 0 in L and 0 in ®(G) identified and
analogously for 1]. Then Aut L* = ¥, In fact, L\{0, 1} and ®(G)\{0, 1} are
nonisomorphic connected posets, so every automorphism r € Aut L* sends
I\{0, 1} into itself and ®(G)\{0, 1} also into itself and, since Q is rigid, it
is identical on L. The set M™ of states is obtained by the extensions of
elements of M as in the previous proof.

3. THE PROOF OF THE MAIN THEOREM

Let {%;|ie I} be a family of groups and < be a partial order on I and
we may suppose that for every two elements i, i’ € I there is their meet i A i’
in I (it can be easily ensured by enlarging the set I, the corresponding new
groups %, being defined arbitrarily).

Let us define a small category k as follows: the set obj k of all objects
of k is precisely the set I; the set k(i, i") of all morphisms of k from i in
i'is

k(ls l’) = {[pi,js g, 'Yj,i']\je I?JS l A i” gE G}}

where p,; and v, are symbols making the sets of morphisms disjoint for
different pairs of objects. The composition of morphisms in k (which is
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written for convenience from the left to the right) is defined by

[pi,ja g, 'Yj,i’] ° [pi',j’: g, ‘)’j',i"]
[Pi,j,g' g, ')’j,i"] ifj=jaj'=j;

[Pi,j, 8, Yj,i"] if] =]A],#]',
[Pi,j’, g, ')’j',i"] ifj#jnj =j
[Pi,j,,, 1, ¥jo.i7) if jo=jnrj, jo#j jo#J

It is easily seen that this composition is associative, so that we really obtain
a category. Let us denote [p;;, 1, v;;] (where 1 is the unit of the group §;)
by r,; and [p;;, 1, %.:] by c;;. Then, for every i€ I, r,;=c;, is the identity
morphism on the object i, denote it by 1,. It should not be confusing to
denote [p;;, g, ¥.:] by g (€%) again. Hence, we see that the category k
is—informally—obtained as follows: for every object i € obj k = I, we form
the endormorphism monoid k(i i) starting from the group % (we may
suppose that the groups are disjoint); if i<j, we add two ‘“‘generating”
morphisms ¢;;€ k(i,j) and r,;€k(j,i) and form a “free envelope with
respect to the equations”

CijOTji=TFiini® Ciniri forall i,ji'el, i=<j=i (1)
€1 ° G = Ciyy Fori =1y forall i<j=<linI (2)
Cij°8=Cij, gern;=r; foralli<jinIand ge¥. (3)
Li=l=c¢;=c;ol=1loc,;=lor,;=r;°1=r, (4)

forall iel and 1€ ¥,

Observe that every r;; is a retraction and ¢;; the corresponding coretraction
(i.e., ¢ or,; =1, forall i<jin I) and

if i £ j, then every morphism in k(i, j) factors through r;;,;,
which is a proper retraction (i.e., not an isomorphism)

(*)

Given a cardinal number «a, denote by &, the category of all suitable
graphs (V, E) with card V = & and all their compatible mappings as morph-
isms [i.e., f: (V, E)>(V}, E;) is a morphism of &, iff it is a mapping of V
into V; such that {x, y} € E={f(x), f(¥)} € E;]. By Pultr and Trnkova (1980,
Chapter 1V), every small category can be fully embedded in &,. Denote
by¥: k- ¥, afullembedding[i.e., for all objects i, j of k, ¥ maps bijectively
k(i, j) onto the set of all compatible maps of ¥(i) into ¥(j)]. If i, je I,
i=<j, then r;; € k(j, i} is a retraction in k; hence ¥(r;,) is a retraction in &,
so it is surjective on vertices as well as on edges. But for i <}, r;; is not an
isomorphism and therefore W(r;;) is not one-to-one. Consequently, by (),
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if i £, then there is no one-to-one compatible mapping of the graph W(i)
into ¥(j). Moreover, Aut W(i)= %, for every i€ L

The completion of the proof of the Main Theorem is now at hand.
Given a quantum logic Q = (L, M), L having only atomic blocks, construct
a rigid quantum logic Q = (L, M) as in the proof of Proposition 1. Let k
be the small category constructed from {¥;|ie I} and the partial order <
on I. Choose a>card L and find a full embedding ¥: k- &,. Then, for
each i€ I, construct the quantum logic Q; = (L;, M;) with Aut L;~= %, as in
the proof of Proposition 2 by means of @Q and the suitable graph ¥(i). If
i<j, then the graph ¥(i) is a retract of ¥(j) and this implies easily that
Q, is a retract of Q;. Of 1 £ j, then there is no one-to-one homomorphism of
L;into L;. In fact, L; is obtained from LU ®(¥(i)) and L; from LU ®(¥(}))
(see the proof of Proposition 2), so any one-to-one homomorphism L; > L;
sends the connected poset ®{¥(i))\{0, 1} either into L\{0,1} or into
&(W(j)N\0, 1}. The first case is impossible because a > card L, the second
case is also impossible because if i £ j, then there is no one-to-one compatible
mapping of ¥(i) into ¥(j) and hence no one-to-one homomorphism of
®(V(i)) into ©(¥(j)) [in fact, if h: P(¥V(i))>P(¥(j)) is a one-to-one
homomorphism, then it sends every chain 0 <x<xv y <1 of the length 4
on a chain of the length 4 in ®(V¥(j)), say 0<a<b<1, so that a = h(x)
is either a vertex of ¥(j) or an atom of the form c¢'a d'; but the last case
is impossible because there are at most two such chains containing ¢'A d’,
namely 0<c'Ad'<c'<1 and 0<¢'and’'<d' <1, while there are at least
four such chains containing x, namely 0<x<xvy<1l,0<x<y' <1, 0<
x<xvz<l, and 0<<x<z'<1, where {x, y} and {x, z} are distinct edges
with the vertex x in the suitable graph ¥(i); consequently, h sends vertices
of W(i) on vertices of ¥(j) and if {x, y} is an edge of W(i), then h(xv y)=
h(x}v h(y), so that {h(x), h(y)} is an edge of ¥(j)].
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